

#### Advancing Nearshore Berm Research, Guidance, Tool Development: Sediment Mobility Tool

#### Brian C. McFall, PhD, PE

Katherine E. Brutsché, PhD

Coastal and Hydraulics Laboratory US Army Engineer R&D Center

10 May 2016







## **Nearshore Placement**



- Sediment placed in the nearshore in either an elongate (bar-like) feature or a mound
  - Stable berms- remain stationary for years
  - Active/Feeder berms- sediment dispersed by waves and currents
- Typically consist of dredged sediment from navigation projects that is incompatible with natural beach sediment
- Goals:
  - Reduce O&M cost
  - Nourish adjacent beaches
  - Selectively move fine sediment offshore, while beach quality material moves onshore
  - Efficiently and beneficially utilize greater volumes of dredged material









# **Nearshore Placement**



- Nearshore placement is increasingly utilized for beneficial use of dredged material
  - Less costly than beach nourishment, fewer restrictions, fewer environmental concerns
- Need a better understanding of sediment migration after placement
  - Stakeholder and regulatory agency questions
- Several programs at USACE ERDC are researching nearshore placement
  - ► CIRP, RSM, DOER, EWN







### **Important Questions**



- Will sediment move once it is placed in the nearshore?
- Where will the sediment move?
- How much sediment will move?
- How long will it take for the sediment to move?







# **Sediment Mobility Tool**



#### Objective:

- Determine frequency of sediment mobility and general transport direction without running a full numerical model
- Ideal for:
  - Preliminary Siting of a Nearshore Placement
  - Small Projects That Don't Warrant a Full Numerical Model
- Currently Being Developed into a Web App







### **User Input**

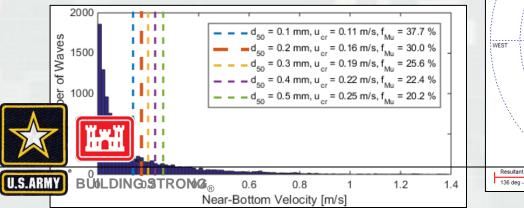


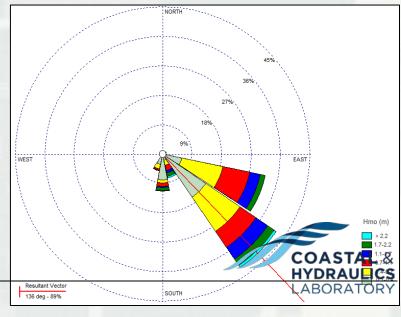
#### Data Source

- Offshore Water Depth of Data Source
- Shoreline Orientation
- Median Grain Size
- Current Velocity 1 m above the Bed

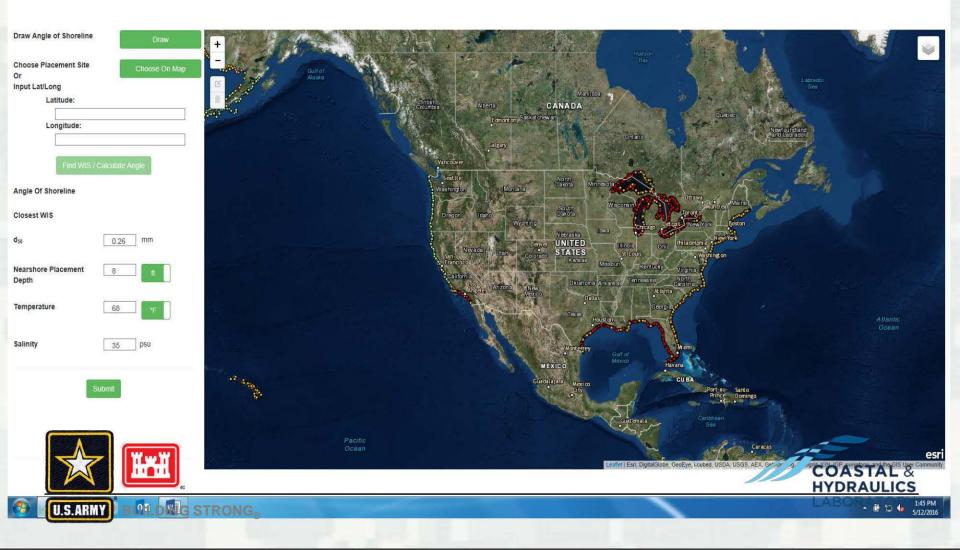




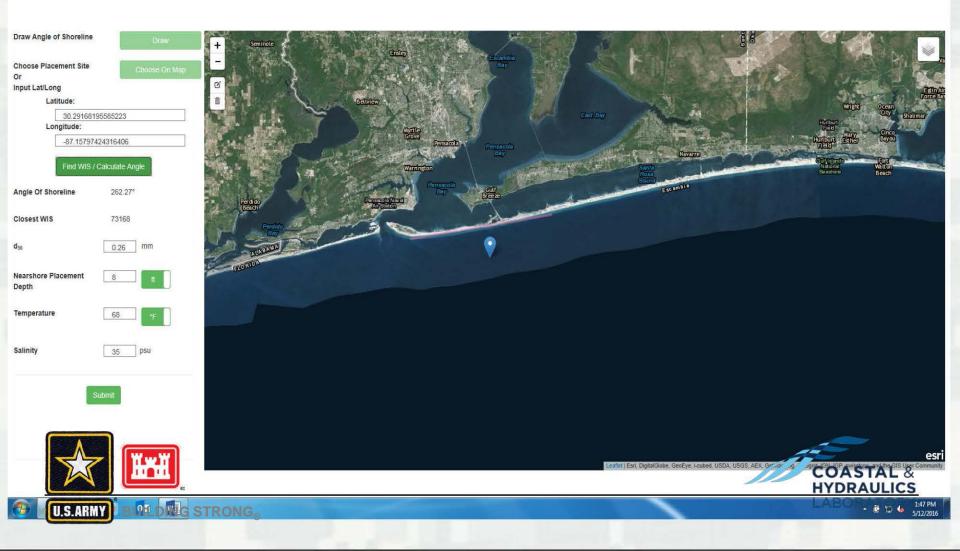




# **Tool Output**




- Frequency of sediment mobility using linear and non-linear wave theories
- On/Offshore migration direction
- Dominant axis of wave direction to estimate alongshore migration

| d <sub>50</sub><br>(mm) | Frequency of<br>Mobilization | Predicted Sediment<br>Migration |
|-------------------------|------------------------------|---------------------------------|
| 0.1                     | 16 - 38%                     | 83% Offshore                    |
| 0.2                     | 14 - 30%                     | 60% Onshore                     |
| 0.3                     | 12 – 26%                     | 84% Onshore                     |














# Research & Development

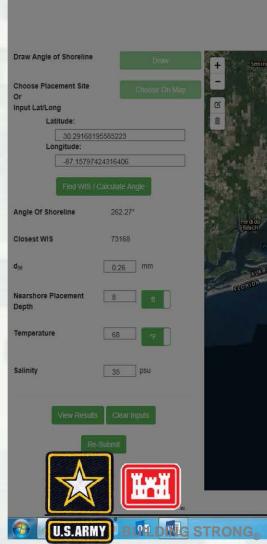
E 10 You 20 Au

4

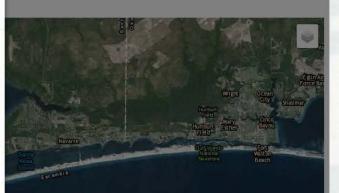




- 0 ×


esri

1:49 PM 5/12/2016


× 🖗 😂 🎪

#### P = C Sediment Mobility Tool x

@ http://155.82.164.219/DoC/ File Edit View Favorites Tools Help



| Sediment Mobility Tool Results                                                | View Results in Meter |
|-------------------------------------------------------------------------------|-----------------------|
| DoC (ft) Wave Characteristics (ft) Wave Ro                                    | se (ft)               |
| Sediment Mobility Tool (<br>WIS Station 73168, 262.27°<br>Nearshore Placement | Shoreline Angle,      |
| Hallermeier Inner (ft)                                                        | 10.87                 |
| Hallermeier Inner Simplified (ft)                                             | 17.96                 |
| Hallermeier Outer (ft)                                                        | 17.01                 |
| Birkemeier (ft)                                                               | 8.31                  |
| Birkemeier Simplified (ft)                                                    | 7.72                  |
|                                                                               | c                     |



# CIRP

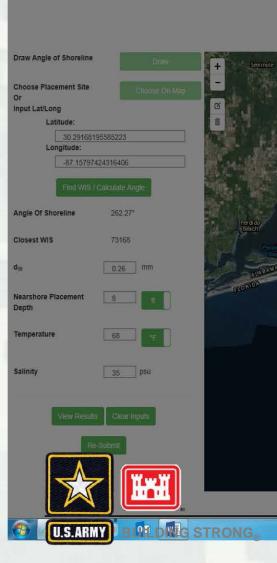




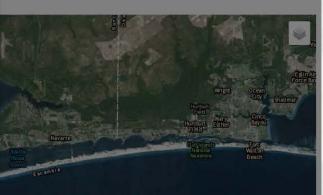
- 0 ×

esri

1:49 PM 5/12/2016


× 🖗 😂 🎪

#### C () ( http://155.82.164.219/DoC/


요 - C 🥥 Sediment Mobility Tool

x

File Edit View Favorites Tools Help



| Sediment              | Mobility Tool Results     | View Results in Meters                                             |
|-----------------------|---------------------------|--------------------------------------------------------------------|
| DoC (ft)              | Wave Characteristics (ft) | Wave Rose (ft)                                                     |
| WIS                   | Station 73168, 2          | ons (1980 - 2015)<br>62.27° Shoreline Angle,<br>cement Depth: 8 ft |
| H <sub>mo</sub> (ft)  |                           | 1.66                                                               |
| H <sub>e</sub> (ft)   |                           | 4.92                                                               |
| H <sub>0.1</sub> (ft) |                           | 3.99                                                               |
| Standar               | d Deviation $\sigma$      | 1.33                                                               |
| T <sub>p</sub> (s)    |                           | 4.91                                                               |
| T <sub>e</sub> (s)    |                           | 12.21                                                              |
|                       |                           | Close                                                              |



Leafed | Ean, DigitalGlobe, GeoEye, Loubed, USBA, USGS, AEX, Geo

#### SMT

P - C 🦉 Sediment Mobility Tool

×



http://155.82.164.219/DoC/ File Edit View Favorites Tools Help

Research & Development

All Port 18 1

4

Sediment Mobility Tool Results **Draw Angle of Shoreline** + DoC (ft) Wave Characteristics (ft) Wave Rose (ft) **Choose Placement Site** Or GulfOfMexico WIS Station 73168 Year Start: 1980 Year End: 2015 Long: -87.15 Lat: 30.25 Depth: 75.46 ft Resultant Vector: 284.00 deg WAVE HEIGHT ROSE N Input Lat/Long Latitude: 30.29168195585223 Longitude: -87.15797424316406 N-W N-E frequency of occurrence Escambia 89.59 % Angle Of Shoreline 262.27\* 31.69 % 23.79 % **Closest WIS** 73168 15.89 % 8.00 % W Ε 0.26 mm diso **Nearshore Placement** 8 Depth Temperature 68 S-E S-W Hm0 (ft) 35 psu Salinity [0.0 1.7] [1.2 : 2.5] [25:37] 5 [3.7 S.0] US Army Engineer Research & Development Center [5.0 : inft Close esri COASTAL & HYDRAULICS BULDING STRONG 1:49 PM U.S.ARMY × 🛱 🔁 🎪 5/12/2016





### Video







# Application



- 6 Sites
- Different Data Sets:
  - ► WIS
  - ► NACCS
  - ► Wave Buoy









- 150,000 cy
- St. Augustine Inlet ebb shoal, flood shoal and part of the IWW
- Murden 500cy hopper, light loaded for NS access ~350-400cy
- Sediment coarse sandsized shell hash and fine to medium sand











- Between T-114 and R-115 and R-116 and R-117
- In front of the two property clusters
- Worked with SAJ and HOA
- Two berm methods to see if there is a differing outcome
- Validate SMT using survey data, CMS modeling, RIOS









- *h* = 10 ft
- WIS Station 63416
- *d*<sub>50</sub> = 0.33 mm











#### **Linear Wave Theory**



 $M = \frac{\tau_{max} - \tau_{cr}}{\tau_{cr}} \bigg)$ 

#### **Nonlinear Stream-Function Wave Theory**



$$M_u = \frac{u_{max} - u_{cr}}{u_{cr}} \bigg)$$





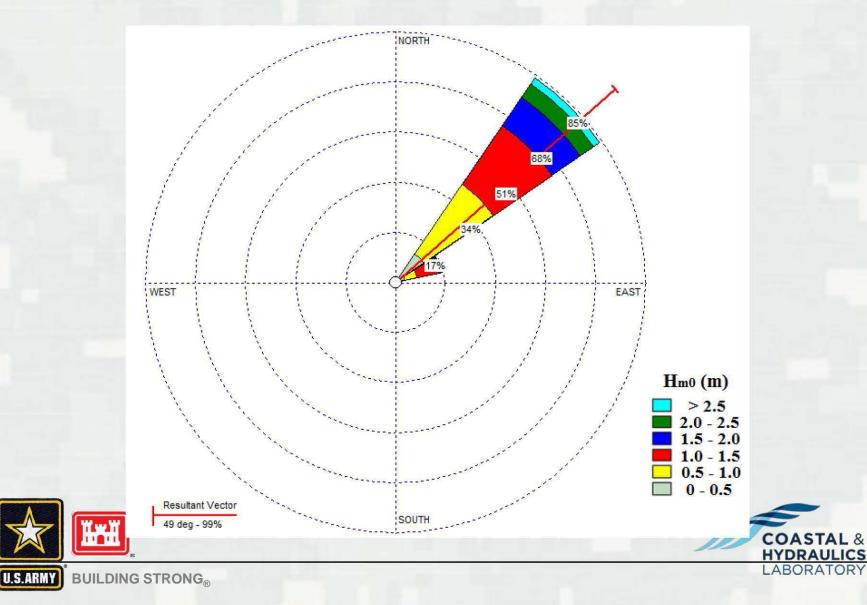
# Sed. Migration Direction



#### Dean Number

# $D = \frac{H_0}{\omega T} > 7.2, \text{ Offshore Migration}$ < 7.2, Onshore Migration (Larson & Kraus, 1992)

| Grain Size<br>(mm) | Predicted Sediment<br>Migration |
|--------------------|---------------------------------|
| 0.1                | 79% Offshore                    |
| 0.2                | 94% Onshore                     |
| 0.3                | 100% Onshore                    |
| 0.33               | 100% Onshore                    |
| 0.4                | 100% Onshore                    |

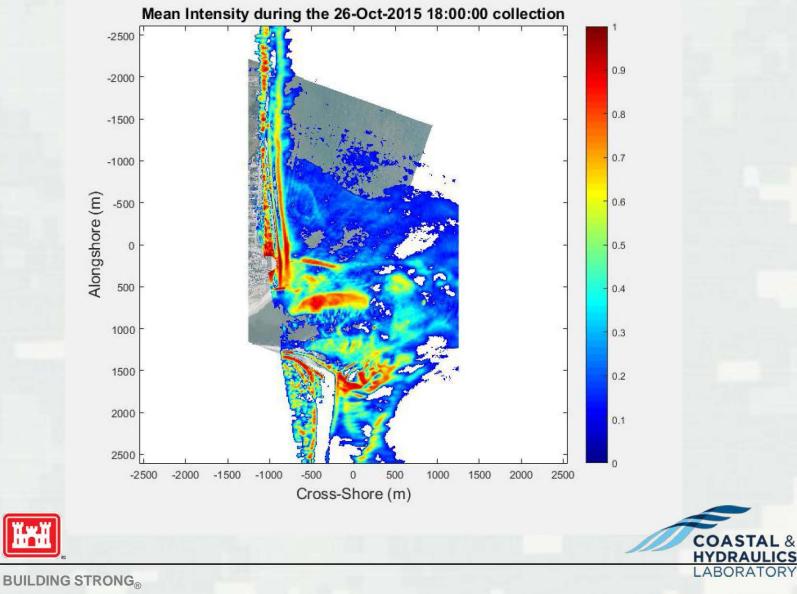







### **Wave Direction**








U.S.ARMY





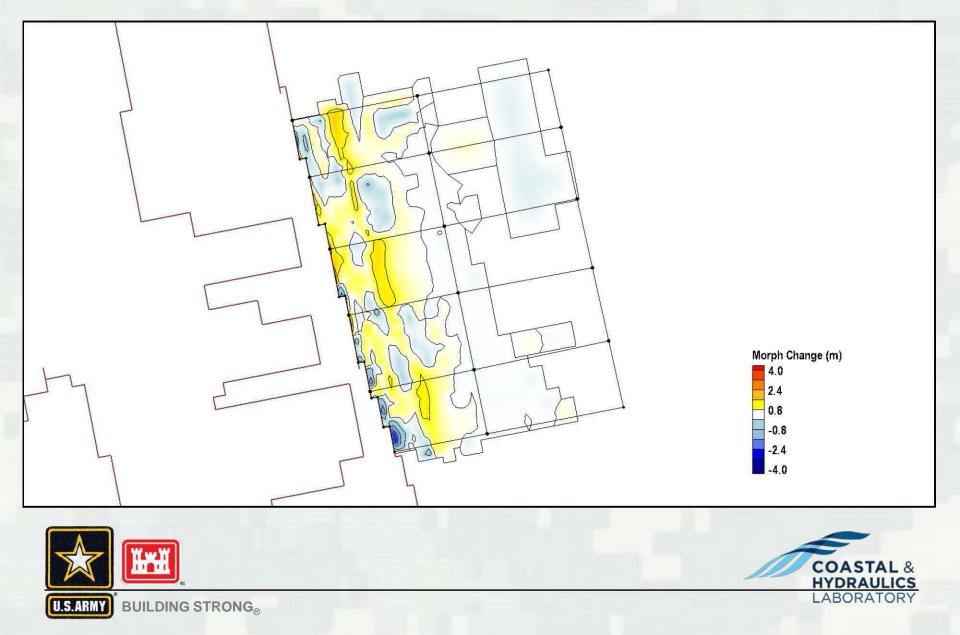


#### September-October 2015

#### December 2015



6.0 6.0 4.0 2.0 0.0 -2.0 COASTAL &


HYDR

LABORATORY

Depth (m)

#### Sediment Volume Change (m<sup>3</sup>)

September 21 – December 16, 2015

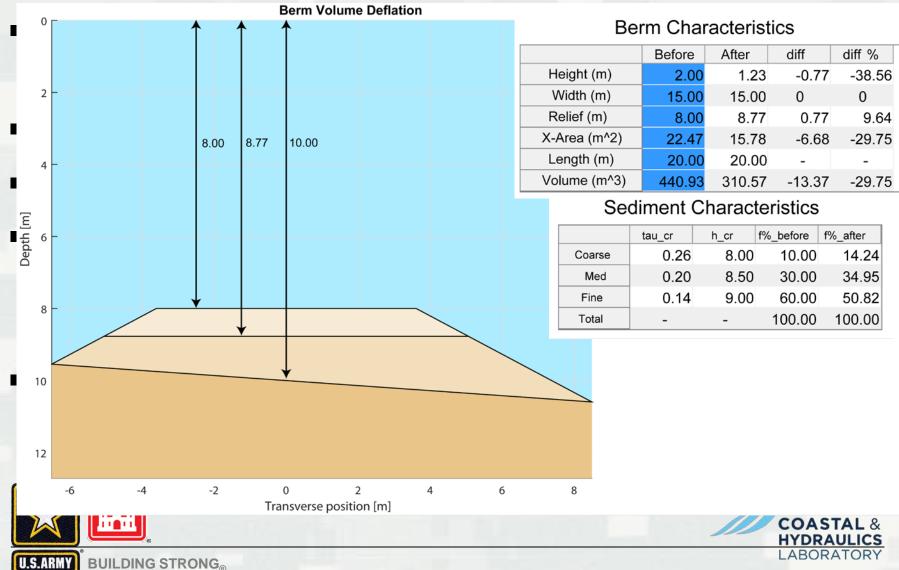




### Results



- Vilano Beach project is being used to help validate SMT
  - Correctly predicted that material would mobilize
  - Gain of sediment in the nearshore may indicate onshore movement of the berms
  - Alongshore dispersion of sediment










#### **Future SMT**

